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Real-Time  Gray-Scale  Video  Processing  Using  a 
Moment-Generating Chip 

R. L. ANDERSSON 

Abstract-A system for performing  visual  processing on gray-scale 
images in real  time (60 Hz) has been  constructed.  The custom VLSI 
moment  generator  chip computes area,  center of gravity, orientation, and 
size. An image  preprocessor allows separate  moments to be  computed for 
separate regions. A standard  set of buses allows new  processing  elements 
to be  easily added. The system is expected to find application in real-time 
sensor-based  electronic  assembly and in automated  inspection  and 
registration  tasks. A simple application to a real-time  visually  servoed 
robot  task is summarized. 

I. INTRODUCTION 

T HE IMPLEMENTATION of a large class of  potential 
robot applications is currently not feasible due to the lack 

of high-speed three-dimensional image-processing systems. 
Current assembly-task design relies on a person’s manipula- 
tive skill, their ability to detect and correct for uncertainty  in 
the environment, and the  ability to concurrently inspect the 
work in progress. The latter two abilities, and perhaps even 
the first, rely on the ability of the person to sense the 
environment using  visual  and tactile perception. To automate 
many tasks, we  must  in effect emulate a person’s perceptual 
skills. 

Robotic vision systems must operate in “real time.” By a 
real-time system, I mean one that does its job in a period  of 
time that  is at least partially determined by external con- 
straints, not just a system that  is fast. The need for real-time 
operation is often created by physical processes, such as when 
the solder has melted or when the object has moved  out  of 
reach of a robot, and  by scheduling constraints such as 
assembly lines. The inability of a robot system to meet  such 
constraints is an outright bar to the usability  of the system. 

Given  that a system can do a specific job in the required 
time, there are important economic reasons for improving the 
operating rate. A system that runs twice as fast costs half as 
much per unit operation. 

In the near term, we  would like to build systems that are 
capable of processing simplified scenes at the rate necessary to 
use the data for real-time robotic control. Tasks often  involve 
observing some feature in an image and causing some  physical 
device to come to a specific position in relation to it for 
“handling.” Examples include picking  up objects and regis- 
tration tasks. Sometimes, the position of the controlled device 
may  not  be accurately known, so it may  be desirable to 
simultaneously monitor the position of both object and  end 
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effector. An alternative is to put the camera on the robot and 
measure the relative displacement directly. 

In the long term, we would like to construct systems capable 
of extracting information useful for manipulation and inspec- 
tion from gray-scale images of three-dimensional scenes in 
real time. Such systems will be an important component of 
larger systems for monitoring an  entire three-dimensional 
workspace for collisions, for verifying machine operation, for 
assuring quality, and for performing detailed assembly jobs. 

A. Current Vision Systems 
Commercial vision systems primarily use binary process- 

ing, typically  by thresholding and run length compressing the 
image to reduce the amount of data before storing it in a fairly 
general-purpose processor. Once read in, the data is processed 
for many tenths of a second before some decision is made. The 
canonical basis for these schemes is [6]; there are many 
current commercial imitators. 

Another class of fast computer vision algorithms is “image 
processing” algorithms. These algorithms take an image as 
input and produce an image as output. Most often, the 
processing is done by a convolution operator used to smooth 
the data or find edges. Special-purpose hardware may  be built 
to perform the processing in pipelined fashion on the video 
stream (for an example, see [3]). From the perspective of 
robotics applications, such algorithms are not directly useful, 
as they do not reduce the amount of information which  needs 
to be processed, although they  may simplify subsequent 
feature extraction operations. Reducing the amount of data to 
be processed without eliminating essential image content is the 
fundamental problem in processing images in real time. 

Advanced research-oriented systems (under the heading of 
“image understanding”) typically read a gray-scale image 
into a frame buffer before processing it for several seconds, 
minutes, or even hours. Although these systems are slowly 
and steadily advancing in capability, their formidable process- 
ing requirements have severely limited their application to the 
robotics environment. 

B. Systems  Approach 
The approach described here trades a lot of the flexibility of 

the image understanding methods for real-time operation. In 
the future, we  would like to be able  to adapt more algorithms 
from the world  of image understanding to real-time process- 
ing. 

A typical system configuration is shown in Fig. 1. The 
modules fall into  two categories: image processors in  which an 
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Fig. 1. Typical  seriesiparallel  system. 
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Fig. 2. Parameters of blob extracted by moments. 

image is input and another image output; or "feature 
extractors" in  which an image is input and  some  set  of 
parameters output. The image processors are connected 
serially, whereas the feature extractors are in  parallel- 
similarly, perhaps, to the  human brain. 

Each individual processing module  is  implemented  on a 
single Multi-Bus board (Intel Corporation). The modules are 
unified by two types of buses (not including  the  Multi-Bus) 
whose signal locations and functions have  been standardized. 
One bus contains a video signal digitized to eight bits of  gray 
scale with 256 X 240 pixels per frame, 60 frames per second. 
The second  bus  is  used to return a computer-selected video 
stream from one of the  modules to the digitizer board for 
output on a monitor. Additional boards may be  easily 
incorporated by designing them to utilize the  busses correctly. 

11. MOMENT GENERATOR 
Moments have been in use in computer vision for some time 

[7],  [ 8 ] ,  and their use  in physics and statistics goes back  much 
farther. The equation defining the moments Mm," of an 
intensity array ai,j is 

where m + n(m, n 2 0) is  the order of the moment, i is the 
column, and j is the row. 

The zero through second-order moments are sufficient to 
find  the area, center of gravity, angle to major axis, and 
standard deviation along major and minor axes for an object, 
approximating the  object as an ellipse, as shown  in Fig. 2. 
These quantities are directly useful in picking up an object, or 
in  guiding further visual processing, for example. Second  and 
higher-order moments  may  be  combined to form "invariants" 
which are used to characterize an  object for purposes of 
discriminating among members of some  set  of objects. 

The amount  of  time required to compute gray-scale mo- 
ments has hindered their use. On a VAX 11/780 with floating- 
point accelerator, a direct calculation of the zero through 
second-order moments  of a 256 x 256 image takes 6.5 s. 
Straightforward hardware implementations of moment calcu- 
lations require large numbers of multipliers, accumulators, 

registers, and supporting logic. Hybrid electrooptical ap- 
proaches are possible [2], but suffer the same problems, in 
terms of accuracy, stability, and dynamic range, that are 
typical of analog computers. The moment generator system is 
intended  to  make the computation of moments easy enough for 
use as a new primitive for image examination. 

The moment computation has been integrated onto a VLSI 
chip capable of computing a single zero through second-order 
moment  of a gray-scale image in real time. Since there are six 
such moments, the moment processor module contains six 
chips. A number  of techniques used to make the chip possible 
will be discussed below. 
A .  Power- Vector Generation 

We consider moment generation as a dot product 
~ m . n  = a,p?J = (a, am,"), (2) 

t 

where the elements of the vectors are in the same order as a 
normal TV scan, t = i + 256j. The element pi,j of p will be 
referred to interchangably with pi+ 256j .  

The equation defining p m s n  is 

p :n = imjn. (3) 

The element pf>O is one for all t. The first order moments 
require a counter for either x or y ,  depending on the moment. 
Apparently, a second order p requires two counters and a 
multiplier. We can write the next value of each second order p 
as a function  of the previous one, 

with special cases for top of screen and left margin. We can 
build an iterative p generator composed of a single counter, a 
shifter, an adder, some "and" gates, and a small control 
programmable logic array (PLA). 
B.  Bit  Decomposition 

We can decompose a as 

a=27a7+26ff6f fa(). (7) 

If  we substitute equation (7) into (2) and distribute, we obtain 

Mm*" = Z7(&, 9"'") + z6(cL6, p"'") + * * + (ao, p"'"). (8) 

Computation of the dot products in (8) requires only 1 X n bit 
multiplication, which  may  be implemented by n "and" gates, 
where n is the number of bits in p.  

At the end of each frame, we  must compute 

M"," = z7F7 + 26F6 + . * * + FO (9) 
where 

Fk = ( a k ,  p"J'). (10) 

Equation (9) can be evaluated only once per frame (60 times 
per second) using Horner's method of polynomial evaluation. 
The calculation is performed by the host processor which 
controls the system. 
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Fig. 3.  Photomicrograph of moment generator chip. 
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Fig. 4. Primary  inputioutput paths for moment generator  chip. 

The Fk accumulators are identical, simplifying the layout  of 
the chip. The decomposition used to obtain  fast operation will 
be seen to provide significant flexibility. 

111. MOMENT GENERATOR CHIP 
The techniques described above allow a moment generating 

IC to be contructed. Internally, the chip (Fig. 3 )  contains a 
programmable logic array (PLA) for control and the p 
generator on the  left side, and a row  of eight F k  accumulators 
across the middle  and to the right. On the far right  is  an  output 
multiplexer. The chip was designed using  the  MULGA 
symbolic layout system [9]. The chip is fabricated in a TTL 
compatible 5 V 2.5 pm CMOS process and contains 10 214 
transistors. The moment generator is  packaged in a 40-pin 
ceramic DIP. 

A high-level view  of  the chips is  shown in Fig. 4. On one 
side, the chip connects to a digitized video source. The video 
is comprised of an eight-bit gray-scale value and a two-bit sync 
code. Data  is input synchronously with respect to a two-phase 
clock. On the other side, the chip connects to a processor or 
other logic. Five address lines and one enable line are used to 
select one of 32 bytes on the chip for presentation on  an  "open 
collector" output bus. The processor may also reset the entire 
Fk accumulator array, or load a moment select code into an 
onboard latch. 

Many devices have been fabricated with  an acceptable 
yield. Moment generators have  been  tested to run at a 115 ns 
period, and  may  run  even faster. The clock frequency must  not 
drop below 500 Hz or the dynamic registers will fail. 

... 
LY5 l-pq-l 

Fig. 5 .  Block diagram of moment generator  board. 

A .  Multiple  Regions 
Taking the  moments  of an entire picture is not generally 

useful,  since the moments of multiple objects are smeared 
together. Moments of each object must  be taken individually. 

Because the F k  accumulators are identical and independent, 
we can use the same chip to compute the moments of more 
than one region at a time, assigning each Fk accumulator to a 
single region (possibly more than one per region, however). 
Since the number of Fk accumulators is the same as the 
number  of  bits  in the picture intensity, we must sacrifice bits 
of precision per region to accommodate additional regions. 

Suppose  we  would like to compute the moments of three 
regions .simultaneously, one region to one bit of intensity 
resolution, another region to five bits of intensity, and the last 
region to two bits of intensity resolution. Equation (9) would 
then  be performed three times, 

My." = F7 ( 1  1) 

MFJ"'24F6+23F5+22Fq+2F3+F2 (12) 

My," = 2Fj + Fo. (13) 

The intensity data applied to the chips must be specially 
formatted. A preprocessor works independently on  the inten- 
sity for each F k  bit. A block diagram of the moment generator 
board, including  the preprocessor, is shown in Fig. 5 .  

The intensity  map converts intensity values to the desired 
precision and alignment. For example, the map may perform 
binary thresholding, intensity windowing, nonlinear response 
correction, or any combination of  the above. The intensity 
map may be  used to correct for scene illumination problems or 
changes. 

The location map defines the region of activity of each Fk; a 
bit  is  on if that Fk is to be activated at that position on the 
screen. To reduce the size of the location map, and simplify 
the host's job, regions are quantized into 8 x 8 pixel blocks. 
For example, Fig. 6 shows a location map for computing the 
moments  of three regions simultaneously to different intensity 
resolutions. 

The ability to do multiple-moment calculations simultane- 
ously  is a consequence of the design of the moment generator 
IC and  of the preprocessor. We desire as many Fk bits as 
possible, since we can track more objects, or get more 
accurate results, with each additional bit. We can get more Fk 
bits by adding more chips. If a lower frame rate per object is 
acceptable, we could process a different set of objects each 
frame. 
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1 

Fig. 6. Location map for  finding  moments of three different  regions 
simultaneously. 

1 

To track a large number of objects, or to deal with a 
complex  background or overlapping objects, a more  complex 
preprocessor  would  be  needed that could  perform the neces- 
sary segmentation. 
B. Region Finding 

Implicit in the simultaneous  computation  of the moments of 
multiple regions is the a priori knowledge  of  where the 
regions are. This implies some  type  of region-finding process 
before  multiregion tracking may begin. One  method  of  doing 
this is to read a  frame into the host's main  memory,  and 
perform a conventional region-finding operation  on it. 

A second  method is to use  moments  themselves to find the 
regions. In this paradigm, the moments of the image as a 
whole are found  and the principal axis identified. The image is 
then bisected perpendicular to the major axis, and the process 
is repeated. The bisection is terminated  when the centers of 
gravity of  two  halves are close to the line of division. The 
intermediate representation is somewhat  akin to quad-trees. 

This  algorithm  has  not  been tried, but similar algorithms 
have  been  reported [5].  A substantial amount  of  experimenta- 
tion will be  required to get the right parameters  and to make 
the process  work. 
C. Higher-Order Moments 

Second-order  moments describe location and orientation, in 
effect approximating the object by an ellipse. The orientation 
is degenerate;  second-order  moments  will  not tell us which 
end of a wrench  has a handle  on it. Similarly sized and  shaped 
objects are not easily discriminated. Higher-order  moments 
contain more information. If we compute all the moments,  we 
know the entire shape  of the object. 

The p generator  and register widths  could be expanded to 
generate  higher-order  moments,  but I do not think the 
increased functionality justifies the increased  complexity. 

I will describe a way  of computing third-order moments 
using  second-order  hardware.  Even  higher-order  moments 
may  be calculated by recursive descent, at the expense of 
exponential time. Fifth and  higher-order  moments are proba- 
bly  best  computed  by the host. 

We  want to calculate 
~ " 9 "  = ai,jimjn (14) 

i j  

where m + n = 3. Equation (14) may  be rewritten as 
~ m , n =  i('y-l,n) ( 1  5 )  

i 

for 
NY." = ai,jimjn.  (16) 

i 

Moments  with m = 0 can factor j out  symmetrically.  We  can 
partition i as 

i= 27i7 + + . + io. (1 7) 

Substituting (17) into (15) yields 
=Nr-1," (270~ + 2606 + + 00)  

+Nm-1,"(2717+2616+ 1 * * + l o ) +  

+N2m551'li(272557+262556+ * - *  +2550). (18) 

We  can redistribute as 

for k between 0 and 7, with w j  = ik so that 
M m , n = 2 7 Q I : - l , n + 2 6 ~ ~ - I , n + .  . . + ~ r - l , n .  (21) 

We  can  compute (21) easily if  we  can do (20). Substituting 
(16) into (20) yields 

QFsn = wi( ai,jimjn ) (22) 

Qp" = wiai,jimjn. (23) 

The w k  define a region for each QrJ'. The region 
corresponding to the Q7 term is the right half  of the  screen. 
The region  corresponding to the Q6 term is the right half  of 
each  half  of the screen. The region  corresponding to the Qs 
term is the right half of all the quarters of the screen, and so on 
down to the Qo term  which is every other column. 

Eight  moment calculations may  be  weighted  and  summed to 
form the third-order moment.  At  worst, this will take eight 
frame times. If the region is small, or we are willing to 
sacrifice precision, or both, we can obtain the third-order 
moment  even faster by computing the moments  of several Q 
terms  each  frame time. 

Basically, the technique  is  an  extension  of the assembly of 
binary  moments to form gray-scale moments, as may  be  seen 
by examination of (9) and (21). The  regions  defined by wi in 
(23) are generated in hardware using a small  amount  of 
additional circuitry in the moment  generator preprocessor. 
D. Advanced Hardware Systems 

One possible preprocessor  is  described  in the earlier section 
on multiple regions; however, it is not the only possibility. 
The properties of moments  can be exploited to achieve 
additional effects. The following are some ideas on  what  might 
be  done  in particular cases. 

If  we  want to track more  than eight objects, several sets of 
chips ir~uld be  placed  on one  board. A hardware segmenter 

i j 

i j  
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(region finder) can be used instead of a map to separate various I MOVE COMPLETE 

I I I I HAND CLOSE 

objects. Some provision would have to be  made for culling the 
small ‘‘noise’ ’ regions. 

If the source of the data operates at a low frame rate, or if 
the resolution and thus the pixel rate is very low  (say from a 
tactile sensor), a frame could be temporarily stored in a buffer 
and  then  run  past a single chip several times in succession at a 
higher rate. 

On the other hand, if  we  would like to process higher- 
resolution video (i.e., 512 X,512), then  two sets of chips may 
be used. In the horizontal direction, each chip processes every 
other pixel. The two 60 Hz fields that comprise a 30 Hz frame 
are already interlaced conveniently. We compute two sets of 
moments each field for two fields, then  mathematically 
combine the results to obtain the (exact) higher resolution 
moments at 30 Hz. 

IV . EXPERIMENT 

This section describes an experiment demonstrating the 
moment generator and robot system catching rolled  ping-pong 
balls. Although  this operation may  not  be  immediately  useful 
(except  possibly to ping-pong  ball manufacturers), it is 
intended to be illustrative of the techniques used for real-time 
tracking of objects, for example, components on conveyor 
belts, robots, and for processing data in real-time from 
cameras mounted  on robots, and so on. 

A .  Hardware Setup 

Three computers provide the computing power; one per- 
forms the vision processing, one controls the robot, and  the 
third performs auxiliary debugging functions. All three 
computers contain a Motorola 68000 processor (SUN board, 
Pacific Microcomputers, Inc. PM68K), a SKY Computers, 
Inc. SKYFFP-M 5100 floating-point processor, and 1 MB of 
memory. The processors are connected by means  of the S/Net 
[1], a high-speed interprocessor connect  well  suited for this 
type  of task. An operating system provides multiprocessing 
and multitasking support for real-time programming [4]. A 
variety of UNIX-like functions are provided, including a 
multiprocessor version of a UNIX pipe for communication. A 
VAX host acts as a file server and software development 
machine. 

An overhead vidicon TV camera connected to the  moment 
generator system views a black table surface in  the  reach  of a 
Unimation  PUMA 260 robot. Ping-pong balls are rolled  from 
the side of the table opposite the robot towards the robot. The 
robot carries a special purpose gripper for catching ping-pong 
balls not unlike a baseball glove. 

The PUMA 260 robot is controlled by a 68000 processor, 
which replaces the DEC LSI-11 in the Unimation controller. 
By programming the 68000 appropriately, we achieve control 
of  the robot kinematics. Servoing of the individual joints is 
performed by an existing microprocessor per joint. 

A second TV camera watches  obliquely from the side; it is 
connected to a commercial frame grabber, and stores a series 
of images for debugging purposes. Position  and  velocity 
profiles are also output on  this display. 

START TRACKING 

Fig. 7. Ball-catching  sequence. 

B. Algorithm 
The system goes through an explicit series of events to catch 

each ball, as outlined in Fig. 7. The plan is to catch the ball at 
the intersection of its trajectory with a fixed line to the rear of 
the table surface (which may be reached by the robot). 

Initially, the entire field of  view  of the camera except for the 
very bottom (where the robot is) is sensitive to incoming balls. 
When a ball first comes into the field of view, it is ignored for 
six frames, so that it may become totally visible. The program 
tracks the ball at a 60 Hz rate for 0.2 s (12 frames), and least 
squares fits a straight line to the trajectory. The fitted straight 
line is intersected with the intercept line to determine the catch 
point. The robot starts moving towards the catch point rapidly 
enough to get there in advance of the ball. 

The vision system then “locks  on”  to the ball by building a 
small  location map around it. Subsequent balls will be ignored 
until the catch sequence is complete. The ball is tracked as the 
robot moves, and each 0.1 s an update to the robot’s target 
location is generated based on the ball’s motion during the 
previous 0.2 s. This allows the system to compensate for 
nonlinear motion  on  the part of the ball, normally due to the 
table not  being level and  being warped, and also due  to initial 
spin on the ball. The ball  may even be made to bounce off 
obstacles during this phase and still be caught. 

As the ball comes nearer to the hand, a number of events 
occur more or less asynchronously. When the ball is predicted 
to be  too close to the hand, or when the area of the ball changes 
too much, visual tracking is discontinued, since otherwise the 
robot hand may  be tracked, which causes very bad effects. At 
the  catch point, the robot stops moving, and allows the ball to 
roll into  the gripper. Without this strategy, and even some- 
times  with it, the robot hand knocks away a ball it would have 
otherwise caught. The hand is commanded to close before the 
ball gets to the hand because of the finite actuator delay. 
Otherwise, the  ball can bounce back out of the hand before it 
shuts. Students  of baseball should  be familiar with this effect, 
as it indicates more damping in the hand  would help. The 
relative timing  of these events depends on some input 
parameters and the speed of the ball. 

Once the  ball is caught, it is thrown back along a fixed 
trajectory. It is possible to throw the ball in the direction from 
which it came, but this makes the possibility of injury to the 
operator much larger. 

This algorithm is not necessarily optimal, but it is a 
reasonable one. Some balls that are theoretically catchable are 
missed due to incompleteness in the algorithm. The program 
works best on balls with constant speed and direction over the 
central part of the table. 
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A counterexample is a ball  with a lot of backspin. The 
algorithm sticks with its original intercept time once it has 
computed it. If the ball slows down, the robot decides to 
“come out” and catch the ball. In some cases, the  robot is not 
able to reach the position where it  wants to catch the ball  and in 
effect gives up, despite the fact that  the  ball continues rolling 
right  on  past the gripper. This problem is  somewhat difficult to 
fix, largely because of the necessity  of re-timing the robot 
motion, and also because of the interaction of  the asynchron- 
ously scheduled events described previously, which  might 
have already occurred and  have to be undone. 

C. Implementation 
The ping-pong  ball catcher is  implemented by a three- 

processor complex, as described previously. The robot pro- 
cessor is the master; it starts the other two, connects to the user 
terminal, and serves as a switching point. 

When the robot processor has decided to catch a ball, it 
sends a “go” message to the  vision processor. When a ball  has 
been  found  and  is being tracked, the  vision processor sends 
back a message  giving  its  position  and velocity. The arm starts 
moving, and  the  vision processor continues to send  updates 
each 0.1 s. The robot processor sends  the frame-grabber 
processor a message  that says “grab a frame” at various 
points  in the catch sequence. 

Eventually the ball is caught (or missed), and the robot 
processor and  vision processor go through an asynchronous 
hand shake to acknowledge the end  of processing for that ball. 
The vision processor then  sends stored debugging information 
(such as position, velocity, speed, and eccentricity) to the 
robot processor, which formats and forwards it to the frame 
grabber for generation of graphs. The frame grabber is  then 
told to cycle through its stored images, and the system goes on 
to get ready for the next ball. 

Robot Control Program-Snatch: The robot control 
program is a myriad of details: the interaction with other 
processors, coordinate system transformation, asynchronous 
event handling, error recovery, etc. Three specific capabilities 
of the robot programming system  that are essential to the 
ability to catch  ping-pong balls are: the  ability to start a robot 
motion  and continue processing while the move  is performed; 
the ability to specify a fixed  time for an operation to be 
completed in; and the ability to modify  the target of a motion 
while  it is  in progress. None  of these capabilities are generally 
found in commercial robot programming systems. 

Moment Generator Program-Ogle: Visual tracking of the 
ping-pong balls is performed by the program ‘‘ogle. ” This 
program uses  binary thresholding and  dynamically generated 
location maps. Ball trajectories are determined by fitting 
centroids to a straight line on the fly. During the update 
period, a moving-window technique is  used to smooth  the 
data. The program is internally controlled by a type  of finite- 
state machine (state + cycle count) which has proven to be 
worthwhile. 

The general sequence of operations for getting  some 
moments  computed  using  this  system is: 1) set up the intensity 
and  location maps; 2) tell  the chips which  moments to 
compute; 3 )  wait for the start of a frame; 4) clear the moment 

accumulators; 5 )  wait for the end of the frame; 6) read out the 
moments from the chips; and 7) do something with the 
moments. Operations 4) and 6) must  be done during the 
vertical retrace interval, about 700 ps. 

One way  of using  the  moment generator system is to 
implement the previously described sequence of operations as 
some subroutine to be called when appropriate. Because of the 
synchronization requirements, at most 30 sets of  moments can 
be computed per second. For initial program development and 
experimentation this  is sufficient. 

For maximal utilization of the system, the operations 
sequence 1)-7)  is pipelined such that both operations 6) and 4) 
(in  that order) occur during each and every retrace interval. 
During the computation of one set of moments, compute the 
location  and  intensity  maps for the next frame are computed. 
So that the updating of the maps does not interfere with the 
current computation, there are in fact two sets of maps; one 
map  of each type is accessible to the processor at a time, while 
the other set is  being  used  in the current computation. I refer to 
this duplication of  maps as “shadowing,” also known as ping- 
pong or swing buffers. 

A simple method  of  making programs that operate in this 
pipeline fashion uses a loop which  is traversed at frame rate, 
changing  the “shadow” (which set of  maps to use)  bit at each 
pass. 

A modified finite-state machine implements the tracking 
sequence. In state RESET, all of the accumulation registers are 
unconditionally clobbered. In the WAIT state, if there is not a 
ball showing, we go back to RESET. If there is a ball, we check 
to  see if  we have  seen it for long enough, and  if  not continue 
waiting. If so, we go to TRACK state for the first 0.2 s of 
tracking the ball. TRACK mainly updates various accumulators. 
After the 0.2 s, the initial position  and  velocity are sent to 
“Snatch,” and the system goes to state REFINE. 

In REFINE, the checking on whether or not to continue 
tracking is a bit more stringent, but the most interesting part is 
the dynamic generation of a location map.  The position of the 
ball  is  predicted ahead slightly, due to the shadow swapping, 
and a rectangular patch  is generated about  that position into the 
appropriate location map, as determined by the shadow bit. 

After the ball  is lost or  “Ogle” is commanded to  “release,” 
the  system enters PRINT state, where it sends debugging 
information out. Extensive “tanks” of data are kept from the 
real-time segment of operation. 

D. Results 
The ping-pong ball catcher is quite reliable for balls in the 

range of 0.5-0.75  m/s. Some balls rolling to the side of the 
table away from where the robot starts are knocked away. 
Very  slowly  moving balls are intentionally ignored, and 
slightly faster balls are sometimes missed because they can 
curve dramatically between  the time they get too close to the 
hand to see  and the time they are caught. At the higher end of 
the scale, balls may be caught fairly reliably  up to the 1 m/s. 
range, depending  on  how close they are  to the robot. The 
gripper, a low  technology device made  of door hinges, also 
contributes to the error rate by allowing some balls to bounce 
out. Balls  have  been caught at 1.3-1.4 m/s, but the robot is 
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currently programmed not to go for balls  moving  that fast,  as it 
tends to cause the robot to crash into things, such as the table. 

The maximum speed of the robot itself is on the order of 1-2 
m/s-not  much faster than the ball. Faster bails could  be 
caught by increasing the speed of the robot, or alternatively by 
increasing the field of view, and thus travel time, of the balls. 
By increasing the field  of view, we decrease the accuracy of 
localization. 

Note  that people can move on the order of 10-15 m/s, and 
that a 100 mph fastball is  moving at 45 m/sec; clearly there is a 
lot of range of improvement for the robot  speed.  Robot  speed 
improvement is not just a matter of  building a faster arm, but 
improving the control system as well. 

V. CONCLUSION 

Conventional systems look at an image with  pixel  examina- 
tion as their primitive operation. Because there are so many 
pixels, processing takes a long time. The availability of the 
moment system means  we  can change our idea of what the 
primitive should be for looking at an image; rather than 
examining individual pixels, we can take a more holistic, 
gestalt view  and examine whole areas of the picture. It may 
well  be better to overkill with  moments  than  use the gross 
underkill of  pixel examination, 

We were able to exploit the power of  VLSI  technology to 
implement a single special-purpose feature extracting element 
which is able to operate in  real time. Moments are not  the 
ultimate such operation and there is probably no single 
universal operator. Instead, we hope  that a catalog of  such 
high-performance vision processing chips will evolve. Very 
powerful vision processors might  then  be  built as a handful  of 
such chips. 

The need to operate in three dimensions should govern the 
creation and selection of primitives for the  next generation of 
systems. By using powerful image-examination primitives, we 
should eventually be able to do real-time image processing of 
complex three-dimensional scenes. 
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