
IEEE JOURNAL OF ROBOTICS AND AUTOMATION, VOL. RA-I, NO. 2, JUNE 1985 79

Real-Time Gray-Scale Video Processing Using a
Moment-Generating Chip

R. L. ANDERSSON

Abstract-A system for performing visual processing on gray-scale
images in real time (60 Hz) has been constructed. The custom VLSI
moment generator chip computes area, center of gravity, orientation, and
size. An image preprocessor allows separate moments to be computed for
separate regions. A standard set of buses allows new processing elements
to be easily added. The system is expected to find application in real-time
sensor-based electronic assembly and in automated inspection and
registration tasks. A simple application to a real-time visually servoed
robot task is summarized.

I. INTRODUCTION

T HE IMPLEMENTATION of a large class of potential
robot applications is currently not feasible due to the lack

of high-speed three-dimensional image-processing systems.
Current assembly-task design relies on a person’s manipula-
tive skill, their ability to detect and correct for uncertainty in
the environment, and the ability to concurrently inspect the
work in progress. The latter two abilities, and perhaps even
the first, rely on the ability of the person to sense the
environment using visual and tactile perception. To automate
many tasks, we must in effect emulate a person’s perceptual
skills.

Robotic vision systems must operate in “real time.” By a
real-time system, I mean one that does its job in a period of
time that is at least partially determined by external con-
straints, not just a system that is fast. The need for real-time
operation is often created by physical processes, such as when
the solder has melted or when the object has moved out of
reach of a robot, and by scheduling constraints such as
assembly lines. The inability of a robot system to meet such
constraints is an outright bar to the usability of the system.

Given that a system can do a specific job in the required
time, there are important economic reasons for improving the
operating rate. A system that runs twice as fast costs half as
much per unit operation.

In the near term, we would like to build systems that are
capable of processing simplified scenes at the rate necessary to
use the data for real-time robotic control. Tasks often involve
observing some feature in an image and causing some physical
device to come to a specific position in relation to it for
“handling.” Examples include picking up objects and regis-
tration tasks. Sometimes, the position of the controlled device
may not be accurately known, so it may be desirable to
simultaneously monitor the position of both object and end

Manuscript received November 1, 1984; revised May 6, 1985.
The author is with AT&T Bell Laboratories, Room 4G608, Crawford’s

Corner Road, Holmdel, NJ 07733, USA.

effector. An alternative is to put the camera on the robot and
measure the relative displacement directly.

In the long term, we would like to construct systems capable
of extracting information useful for manipulation and inspec-
tion from gray-scale images of three-dimensional scenes in
real time. Such systems will be an important component of
larger systems for monitoring an entire three-dimensional
workspace for collisions, for verifying machine operation, for
assuring quality, and for performing detailed assembly jobs.

A. Current Vision Systems
Commercial vision systems primarily use binary process-

ing, typically by thresholding and run length compressing the
image to reduce the amount of data before storing it in a fairly
general-purpose processor. Once read in, the data is processed
for many tenths of a second before some decision is made. The
canonical basis for these schemes is [6]; there are many
current commercial imitators.

Another class of fast computer vision algorithms is “image
processing” algorithms. These algorithms take an image as
input and produce an image as output. Most often, the
processing is done by a convolution operator used to smooth
the data or find edges. Special-purpose hardware may be built
to perform the processing in pipelined fashion on the video
stream (for an example, see [3]). From the perspective of
robotics applications, such algorithms are not directly useful,
as they do not reduce the amount of information which needs
to be processed, although they may simplify subsequent
feature extraction operations. Reducing the amount of data to
be processed without eliminating essential image content is the
fundamental problem in processing images in real time.

Advanced research-oriented systems (under the heading of
“image understanding”) typically read a gray-scale image
into a frame buffer before processing it for several seconds,
minutes, or even hours. Although these systems are slowly
and steadily advancing in capability, their formidable process-
ing requirements have severely limited their application to the
robotics environment.

B. Systems Approach
The approach described here trades a lot of the flexibility of

the image understanding methods for real-time operation. In
the future, we would like to be able to adapt more algorithms
from the world of image understanding to real-time process-
ing.

A typical system configuration is shown in Fig. 1. The
modules fall into two categories: image processors in which an

0882-4967/85/0600-0079$01 .OO 0 1985 IEEE

80 IEEE JOURNAL OF ROBOTICS AND AUTOMATION, VOL. RA-1, NO. 2, JUNE 1985

M EXTRACTOR - FEATURE

1

FEATURE
-e EXTRACTOR -

n

Fig. 1. Typical seriesiparallel system.

i ,MAJOR AXlS

X

Fig. 2. Parameters of blob extracted by moments.

image is input and another image output; or "feature
extractors" in which an image is input and some set of
parameters output. The image processors are connected
serially, whereas the feature extractors are in parallel-
similarly, perhaps, to the human brain.

Each individual processing module is implemented on a
single Multi-Bus board (Intel Corporation). The modules are
unified by two types of buses (not including the Multi-Bus)
whose signal locations and functions have been standardized.
One bus contains a video signal digitized to eight bits of gray
scale with 256 X 240 pixels per frame, 60 frames per second.
The second bus is used to return a computer-selected video
stream from one of the modules to the digitizer board for
output on a monitor. Additional boards may be easily
incorporated by designing them to utilize the busses correctly.

11. MOMENT GENERATOR
Moments have been in use in computer vision for some time

[7], [8] , and their use in physics and statistics goes back much
farther. The equation defining the moments Mm," of an
intensity array ai,j is

where m + n(m, n 2 0) is the order of the moment, i is the
column, and j is the row.

The zero through second-order moments are sufficient to
find the area, center of gravity, angle to major axis, and
standard deviation along major and minor axes for an object,
approximating the object as an ellipse, as shown in Fig. 2.
These quantities are directly useful in picking up an object, or
in guiding further visual processing, for example. Second and
higher-order moments may be combined to form "invariants"
which are used to characterize an object for purposes of
discriminating among members of some set of objects.

The amount of time required to compute gray-scale mo-
ments has hindered their use. On a VAX 11/780 with floating-
point accelerator, a direct calculation of the zero through
second-order moments of a 256 x 256 image takes 6.5 s.
Straightforward hardware implementations of moment calcu-
lations require large numbers of multipliers, accumulators,

registers, and supporting logic. Hybrid electrooptical ap-
proaches are possible [2], but suffer the same problems, in
terms of accuracy, stability, and dynamic range, that are
typical of analog computers. The moment generator system is
intended to make the computation of moments easy enough for
use as a new primitive for image examination.

The moment computation has been integrated onto a VLSI
chip capable of computing a single zero through second-order
moment of a gray-scale image in real time. Since there are six
such moments, the moment processor module contains six
chips. A number of techniques used to make the chip possible
will be discussed below.
A . Power- Vector Generation

We consider moment generation as a dot product
~ m . n = a,p?J = (a, am,"), (2)

t

where the elements of the vectors are in the same order as a
normal TV scan, t = i + 256j. The element pi,j of p will be
referred to interchangably with pi+ 256j .

The equation defining p m s n is

p :n = imjn. (3)

The element pf>O is one for all t. The first order moments
require a counter for either x or y , depending on the moment.
Apparently, a second order p requires two counters and a
multiplier. We can write the next value of each second order p
as a function of the previous one,

with special cases for top of screen and left margin. We can
build an iterative p generator composed of a single counter, a
shifter, an adder, some "and" gates, and a small control
programmable logic array (PLA).
B. Bit Decomposition

We can decompose a as

a=27a7+26ff6f fa(). (7)

If we substitute equation (7) into (2) and distribute, we obtain

Mm*" = Z7(&, 9"'") + z6(cL6, p"'") + * * + (ao, p"'"). (8)

Computation of the dot products in (8) requires only 1 X n bit
multiplication, which may be implemented by n "and" gates,
where n is the number of bits in p.

At the end of each frame, we must compute

M"," = z7F7 + 26F6 + . * * + FO (9)
where

Fk = (a k , p"J'). (10)

Equation (9) can be evaluated only once per frame (60 times
per second) using Horner's method of polynomial evaluation.
The calculation is performed by the host processor which
controls the system.

ANDERSON: REAL-TIME GRAY-SCALE VIDEO PROCESSING 81

Fig. 3. Photomicrograph of moment generator chip.

CLOCKS
MOMENT CODE

~ $ ~ ~ & s MOMENT E RESET
GENERATOR CHIP SELECT

INTENSITY
BYTE SELECT

DATA OUT

Fig. 4. Primary inputioutput paths for moment generator chip.

The Fk accumulators are identical, simplifying the layout of
the chip. The decomposition used to obtain fast operation will
be seen to provide significant flexibility.

111. MOMENT GENERATOR CHIP
The techniques described above allow a moment generating

IC to be contructed. Internally, the chip (Fig. 3) contains a
programmable logic array (PLA) for control and the p
generator on the left side, and a row of eight F k accumulators
across the middle and to the right. On the far right is an output
multiplexer. The chip was designed using the MULGA
symbolic layout system [9]. The chip is fabricated in a TTL
compatible 5 V 2.5 pm CMOS process and contains 10 214
transistors. The moment generator is packaged in a 40-pin
ceramic DIP.

A high-level view of the chips is shown in Fig. 4. On one
side, the chip connects to a digitized video source. The video
is comprised of an eight-bit gray-scale value and a two-bit sync
code. Data is input synchronously with respect to a two-phase
clock. On the other side, the chip connects to a processor or
other logic. Five address lines and one enable line are used to
select one of 32 bytes on the chip for presentation on an "open
collector" output bus. The processor may also reset the entire
Fk accumulator array, or load a moment select code into an
onboard latch.

Many devices have been fabricated with an acceptable
yield. Moment generators have been tested to run at a 115 ns
period, and may run even faster. The clock frequency must not
drop below 500 Hz or the dynamic registers will fail.

...
LY5 l-pq-l

Fig. 5 . Block diagram of moment generator board.

A . Multiple Regions
Taking the moments of an entire picture is not generally

useful, since the moments of multiple objects are smeared
together. Moments of each object must be taken individually.

Because the F k accumulators are identical and independent,
we can use the same chip to compute the moments of more
than one region at a time, assigning each Fk accumulator to a
single region (possibly more than one per region, however).
Since the number of Fk accumulators is the same as the
number of bits in the picture intensity, we must sacrifice bits
of precision per region to accommodate additional regions.

Suppose we would like to compute the moments of three
regions .simultaneously, one region to one bit of intensity
resolution, another region to five bits of intensity, and the last
region to two bits of intensity resolution. Equation (9) would
then be performed three times,

My." = F7 (1 1)

MFJ"'24F6+23F5+22Fq+2F3+F2 (12)

My," = 2Fj + Fo. (13)

The intensity data applied to the chips must be specially
formatted. A preprocessor works independently on the inten-
sity for each F k bit. A block diagram of the moment generator
board, including the preprocessor, is shown in Fig. 5 .

The intensity map converts intensity values to the desired
precision and alignment. For example, the map may perform
binary thresholding, intensity windowing, nonlinear response
correction, or any combination of the above. The intensity
map may be used to correct for scene illumination problems or
changes.

The location map defines the region of activity of each Fk; a
bit is on if that Fk is to be activated at that position on the
screen. To reduce the size of the location map, and simplify
the host's job, regions are quantized into 8 x 8 pixel blocks.
For example, Fig. 6 shows a location map for computing the
moments of three regions simultaneously to different intensity
resolutions.

The ability to do multiple-moment calculations simultane-
ously is a consequence of the design of the moment generator
IC and of the preprocessor. We desire as many Fk bits as
possible, since we can track more objects, or get more
accurate results, with each additional bit. We can get more Fk
bits by adding more chips. If a lower frame rate per object is
acceptable, we could process a different set of objects each
frame.

82 IEEE JOURNAL OF ROBOTICS VD AUTOMATION, VOL. RA-1, NO. 2, JUNE 1985

1

Fig. 6. Location map for finding moments of three different regions
simultaneously.

1

To track a large number of objects, or to deal with a
complex background or overlapping objects, a more complex
preprocessor would be needed that could perform the neces-
sary segmentation.
B. Region Finding

Implicit in the simultaneous computation of the moments of
multiple regions is the a priori knowledge of where the
regions are. This implies some type of region-finding process
before multiregion tracking may begin. One method of doing
this is to read a frame into the host's main memory, and
perform a conventional region-finding operation on it.

A second method is to use moments themselves to find the
regions. In this paradigm, the moments of the image as a
whole are found and the principal axis identified. The image is
then bisected perpendicular to the major axis, and the process
is repeated. The bisection is terminated when the centers of
gravity of two halves are close to the line of division. The
intermediate representation is somewhat akin to quad-trees.

This algorithm has not been tried, but similar algorithms
have been reported [5]. A substantial amount of experimenta-
tion will be required to get the right parameters and to make
the process work.
C. Higher-Order Moments

Second-order moments describe location and orientation, in
effect approximating the object by an ellipse. The orientation
is degenerate; second-order moments will not tell us which
end of a wrench has a handle on it. Similarly sized and shaped
objects are not easily discriminated. Higher-order moments
contain more information. If we compute all the moments, we
know the entire shape of the object.

The p generator and register widths could be expanded to
generate higher-order moments, but I do not think the
increased functionality justifies the increased complexity.

I will describe a way of computing third-order moments
using second-order hardware. Even higher-order moments
may be calculated by recursive descent, at the expense of
exponential time. Fifth and higher-order moments are proba-
bly best computed by the host.

We want to calculate
~ " 9 " = ai,jimjn (14)

i j

where m + n = 3. Equation (14) may be rewritten as
~ m , n = i('y-l,n) (1 5)

i

for
NY." = ai,jimjn. (16)

i

Moments with m = 0 can factor j out symmetrically. We can
partition i as

i= 27i7 + + . + io. (1 7)

Substituting (17) into (15) yields
=Nr-1," (270~ + 2606 + + 00)

+Nm-1,"(2717+2616+ 1 * * + l o) +

+N2m551'li(272557+262556+ * - * +2550). (18)

We can redistribute as

for k between 0 and 7, with w j = ik so that
M m , n = 2 7 Q I : - l , n + 2 6 ~ ~ - I , n + . . . + ~ r - l , n . (21)

We can compute (21) easily if we can do (20). Substituting
(16) into (20) yields

QFsn = wi(ai,jimjn) (22)

Qp" = wiai,jimjn. (23)

The w k define a region for each QrJ'. The region
corresponding to the Q7 term is the right half of the screen.
The region corresponding to the Q6 term is the right half of
each half of the screen. The region corresponding to the Qs
term is the right half of all the quarters of the screen, and so on
down to the Qo term which is every other column.

Eight moment calculations may be weighted and summed to
form the third-order moment. At worst, this will take eight
frame times. If the region is small, or we are willing to
sacrifice precision, or both, we can obtain the third-order
moment even faster by computing the moments of several Q
terms each frame time.

Basically, the technique is an extension of the assembly of
binary moments to form gray-scale moments, as may be seen
by examination of (9) and (21). The regions defined by wi in
(23) are generated in hardware using a small amount of
additional circuitry in the moment generator preprocessor.
D. Advanced Hardware Systems

One possible preprocessor is described in the earlier section
on multiple regions; however, it is not the only possibility.
The properties of moments can be exploited to achieve
additional effects. The following are some ideas on what might
be done in particular cases.

If we want to track more than eight objects, several sets of
chips ir~uld be placed on one board. A hardware segmenter

i j

i j

ANDERSSON: REAL-TIME GRAY-SCALE VIDEO PROCESSING 83

(region finder) can be used instead of a map to separate various I MOVE COMPLETE

I I I I HAND CLOSE

objects. Some provision would have to be made for culling the
small ‘‘noise’ ’ regions.

If the source of the data operates at a low frame rate, or if
the resolution and thus the pixel rate is very low (say from a
tactile sensor), a frame could be temporarily stored in a buffer
and then run past a single chip several times in succession at a
higher rate.

On the other hand, if we would like to process higher-
resolution video (i.e., 512 X,512), then two sets of chips may
be used. In the horizontal direction, each chip processes every
other pixel. The two 60 Hz fields that comprise a 30 Hz frame
are already interlaced conveniently. We compute two sets of
moments each field for two fields, then mathematically
combine the results to obtain the (exact) higher resolution
moments at 30 Hz.

IV . EXPERIMENT

This section describes an experiment demonstrating the
moment generator and robot system catching rolled ping-pong
balls. Although this operation may not be immediately useful
(except possibly to ping-pong ball manufacturers), it is
intended to be illustrative of the techniques used for real-time
tracking of objects, for example, components on conveyor
belts, robots, and for processing data in real-time from
cameras mounted on robots, and so on.

A . Hardware Setup

Three computers provide the computing power; one per-
forms the vision processing, one controls the robot, and the
third performs auxiliary debugging functions. All three
computers contain a Motorola 68000 processor (SUN board,
Pacific Microcomputers, Inc. PM68K), a SKY Computers,
Inc. SKYFFP-M 5100 floating-point processor, and 1 MB of
memory. The processors are connected by means of the S/Net
[1], a high-speed interprocessor connect well suited for this
type of task. An operating system provides multiprocessing
and multitasking support for real-time programming [4]. A
variety of UNIX-like functions are provided, including a
multiprocessor version of a UNIX pipe for communication. A
VAX host acts as a file server and software development
machine.

An overhead vidicon TV camera connected to the moment
generator system views a black table surface in the reach of a
Unimation PUMA 260 robot. Ping-pong balls are rolled from
the side of the table opposite the robot towards the robot. The
robot carries a special purpose gripper for catching ping-pong
balls not unlike a baseball glove.

The PUMA 260 robot is controlled by a 68000 processor,
which replaces the DEC LSI-11 in the Unimation controller.
By programming the 68000 appropriately, we achieve control
of the robot kinematics. Servoing of the individual joints is
performed by an existing microprocessor per joint.

A second TV camera watches obliquely from the side; it is
connected to a commercial frame grabber, and stores a series
of images for debugging purposes. Position and velocity
profiles are also output on this display.

START TRACKING

Fig. 7. Ball-catching sequence.

B. Algorithm
The system goes through an explicit series of events to catch

each ball, as outlined in Fig. 7. The plan is to catch the ball at
the intersection of its trajectory with a fixed line to the rear of
the table surface (which may be reached by the robot).

Initially, the entire field of view of the camera except for the
very bottom (where the robot is) is sensitive to incoming balls.
When a ball first comes into the field of view, it is ignored for
six frames, so that it may become totally visible. The program
tracks the ball at a 60 Hz rate for 0.2 s (12 frames), and least
squares fits a straight line to the trajectory. The fitted straight
line is intersected with the intercept line to determine the catch
point. The robot starts moving towards the catch point rapidly
enough to get there in advance of the ball.

The vision system then “locks on” to the ball by building a
small location map around it. Subsequent balls will be ignored
until the catch sequence is complete. The ball is tracked as the
robot moves, and each 0.1 s an update to the robot’s target
location is generated based on the ball’s motion during the
previous 0.2 s. This allows the system to compensate for
nonlinear motion on the part of the ball, normally due to the
table not being level and being warped, and also due to initial
spin on the ball. The ball may even be made to bounce off
obstacles during this phase and still be caught.

As the ball comes nearer to the hand, a number of events
occur more or less asynchronously. When the ball is predicted
to be too close to the hand, or when the area of the ball changes
too much, visual tracking is discontinued, since otherwise the
robot hand may be tracked, which causes very bad effects. At
the catch point, the robot stops moving, and allows the ball to
roll into the gripper. Without this strategy, and even some-
times with it, the robot hand knocks away a ball it would have
otherwise caught. The hand is commanded to close before the
ball gets to the hand because of the finite actuator delay.
Otherwise, the ball can bounce back out of the hand before it
shuts. Students of baseball should be familiar with this effect,
as it indicates more damping in the hand would help. The
relative timing of these events depends on some input
parameters and the speed of the ball.

Once the ball is caught, it is thrown back along a fixed
trajectory. It is possible to throw the ball in the direction from
which it came, but this makes the possibility of injury to the
operator much larger.

This algorithm is not necessarily optimal, but it is a
reasonable one. Some balls that are theoretically catchable are
missed due to incompleteness in the algorithm. The program
works best on balls with constant speed and direction over the
central part of the table.

84 IEEE JOURNAL OF ROBOTICS AND AUTOMATION, VOL. RA-1, NO. 2, JUNE 1985

A counterexample is a ball with a lot of backspin. The
algorithm sticks with its original intercept time once it has
computed it. If the ball slows down, the robot decides to
“come out” and catch the ball. In some cases, the robot is not
able to reach the position where it wants to catch the ball and in
effect gives up, despite the fact that the ball continues rolling
right on past the gripper. This problem is somewhat difficult to
fix, largely because of the necessity of re-timing the robot
motion, and also because of the interaction of the asynchron-
ously scheduled events described previously, which might
have already occurred and have to be undone.

C. Implementation
The ping-pong ball catcher is implemented by a three-

processor complex, as described previously. The robot pro-
cessor is the master; it starts the other two, connects to the user
terminal, and serves as a switching point.

When the robot processor has decided to catch a ball, it
sends a “go” message to the vision processor. When a ball has
been found and is being tracked, the vision processor sends
back a message giving its position and velocity. The arm starts
moving, and the vision processor continues to send updates
each 0.1 s. The robot processor sends the frame-grabber
processor a message that says “grab a frame” at various
points in the catch sequence.

Eventually the ball is caught (or missed), and the robot
processor and vision processor go through an asynchronous
hand shake to acknowledge the end of processing for that ball.
The vision processor then sends stored debugging information
(such as position, velocity, speed, and eccentricity) to the
robot processor, which formats and forwards it to the frame
grabber for generation of graphs. The frame grabber is then
told to cycle through its stored images, and the system goes on
to get ready for the next ball.

Robot Control Program-Snatch: The robot control
program is a myriad of details: the interaction with other
processors, coordinate system transformation, asynchronous
event handling, error recovery, etc. Three specific capabilities
of the robot programming system that are essential to the
ability to catch ping-pong balls are: the ability to start a robot
motion and continue processing while the move is performed;
the ability to specify a fixed time for an operation to be
completed in; and the ability to modify the target of a motion
while it is in progress. None of these capabilities are generally
found in commercial robot programming systems.

Moment Generator Program-Ogle: Visual tracking of the
ping-pong balls is performed by the program ‘‘ogle. ” This
program uses binary thresholding and dynamically generated
location maps. Ball trajectories are determined by fitting
centroids to a straight line on the fly. During the update
period, a moving-window technique is used to smooth the
data. The program is internally controlled by a type of finite-
state machine (state + cycle count) which has proven to be
worthwhile.

The general sequence of operations for getting some
moments computed using this system is: 1) set up the intensity
and location maps; 2) tell the chips which moments to
compute; 3) wait for the start of a frame; 4) clear the moment

accumulators; 5) wait for the end of the frame; 6) read out the
moments from the chips; and 7) do something with the
moments. Operations 4) and 6) must be done during the
vertical retrace interval, about 700 ps.

One way of using the moment generator system is to
implement the previously described sequence of operations as
some subroutine to be called when appropriate. Because of the
synchronization requirements, at most 30 sets of moments can
be computed per second. For initial program development and
experimentation this is sufficient.

For maximal utilization of the system, the operations
sequence 1)-7) is pipelined such that both operations 6) and 4)
(in that order) occur during each and every retrace interval.
During the computation of one set of moments, compute the
location and intensity maps for the next frame are computed.
So that the updating of the maps does not interfere with the
current computation, there are in fact two sets of maps; one
map of each type is accessible to the processor at a time, while
the other set is being used in the current computation. I refer to
this duplication of maps as “shadowing,” also known as ping-
pong or swing buffers.

A simple method of making programs that operate in this
pipeline fashion uses a loop which is traversed at frame rate,
changing the “shadow” (which set of maps to use) bit at each
pass.

A modified finite-state machine implements the tracking
sequence. In state RESET, all of the accumulation registers are
unconditionally clobbered. In the WAIT state, if there is not a
ball showing, we go back to RESET. If there is a ball, we check
to see if we have seen it for long enough, and if not continue
waiting. If so, we go to TRACK state for the first 0.2 s of
tracking the ball. TRACK mainly updates various accumulators.
After the 0.2 s, the initial position and velocity are sent to
“Snatch,” and the system goes to state REFINE.

In REFINE, the checking on whether or not to continue
tracking is a bit more stringent, but the most interesting part is
the dynamic generation of a location map. The position of the
ball is predicted ahead slightly, due to the shadow swapping,
and a rectangular patch is generated about that position into the
appropriate location map, as determined by the shadow bit.

After the ball is lost or “Ogle” is commanded to “release,”
the system enters PRINT state, where it sends debugging
information out. Extensive “tanks” of data are kept from the
real-time segment of operation.

D. Results
The ping-pong ball catcher is quite reliable for balls in the

range of 0.5-0.75 m/s. Some balls rolling to the side of the
table away from where the robot starts are knocked away.
Very slowly moving balls are intentionally ignored, and
slightly faster balls are sometimes missed because they can
curve dramatically between the time they get too close to the
hand to see and the time they are caught. At the higher end of
the scale, balls may be caught fairly reliably up to the 1 m/s.
range, depending on how close they are to the robot. The
gripper, a low technology device made of door hinges, also
contributes to the error rate by allowing some balls to bounce
out. Balls have been caught at 1.3-1.4 m/s, but the robot is

ANDERSON: REAL-TIME GRAY-SCALE VIDEO PROCESSING 85

currently programmed not to go for balls moving that fast, as it
tends to cause the robot to crash into things, such as the table.

The maximum speed of the robot itself is on the order of 1-2
m/s-not much faster than the ball. Faster bails could be
caught by increasing the speed of the robot, or alternatively by
increasing the field of view, and thus travel time, of the balls.
By increasing the field of view, we decrease the accuracy of
localization.

Note that people can move on the order of 10-15 m/s, and
that a 100 mph fastball is moving at 45 m/sec; clearly there is a
lot of range of improvement for the robot speed. Robot speed
improvement is not just a matter of building a faster arm, but
improving the control system as well.

V. CONCLUSION

Conventional systems look at an image with pixel examina-
tion as their primitive operation. Because there are so many
pixels, processing takes a long time. The availability of the
moment system means we can change our idea of what the
primitive should be for looking at an image; rather than
examining individual pixels, we can take a more holistic,
gestalt view and examine whole areas of the picture. It may
well be better to overkill with moments than use the gross
underkill of pixel examination,

We were able to exploit the power of VLSI technology to
implement a single special-purpose feature extracting element
which is able to operate in real time. Moments are not the
ultimate such operation and there is probably no single
universal operator. Instead, we hope that a catalog of such
high-performance vision processing chips will evolve. Very
powerful vision processors might then be built as a handful of
such chips.

The need to operate in three dimensions should govern the
creation and selection of primitives for the next generation of
systems. By using powerful image-examination primitives, we
should eventually be able to do real-time image processing of
complex three-dimensional scenes.

ACKNOWLEDGMENT
Many people contributed to this multi-disciplinary project;

it is impossible to thank them all. Many thanks to the S/Net
team, the MULGA team, and the rest of my department. J. F.
Jarvis deserves special mention for providing the environment
and impetus for this project to take place.

r11

r21

r31

r41

r51

REFERENCES
S. R. Ahuja, “SiNet: A high speed interconnect for multiple
computers,” IEEE J. Select. Areas Commun., vol. SAC-1, no, 5, p.

D. Casasent and D. Psaltis, “Hybrid processor to compute invariant
moments for pattern recognition,” Opt. Lett., vol. 5 , no. 9, p. 395-
397, Sept. 1980.
T. Fukushima et al., “ISP: A dedicated LSI for gray image local
operations,” in Proc. 7th Int. Conf. Pattern Recognition, vol. 1, p.

R. D. Gaglianello and H. P. Katseff, “Meglos: An operating system
for a multiprocessor environment,” in Proc. 5th Int. Conf. Distrib-
uted Computing Systems, May 1985.
L. Gibson and D. Lucas, “Spatial data processing using generalized
balanced ternary,” in Proc. IEEE Comp. Soc. Conf. Pattern
Recognition and Image Processing, p. 566-571, June 1982.
G. J. Gleason and G. J. Agin, “A modular vision system for sensor-

Industrial Robots, SMEIRIA, p. 57-70, Mar. 1979.
controlled manipulation and inspection,” in Proc. 9th Int. Symp.

M. Hu, “Visual pattern recognition by moment invariants,” IRE
Trans. Inform. Theory, vol. IT-8, p. 179-187, Feb. 1962.
A. P. Reeves and A. Rostampour, “Shape analysis of segmental
objects using moments,” in Proc. IEEE Comp. Soc. Conf. Pattern
Recognition and Image Processing, p. 171-176, Aug. 1981.
N. H. E. Weste, “Virtual grid symbolic layout,” in Proc. 18th Design
Automation Conf., p. 225-233, June 1981.

751-756, NOV. 1983.

581-584, July 1984.

Tau Beta Pi

Russell L. Andersson was born in Philadelphia,
PA, on September 24, 1958. He received the B.S.
and M.S. degrees in computer science from the
University of Pennsylvania, Philadelphia, in 1980
and 1981, respectively.

He joined AT&T Bell Laboratories in 1981 and is
currently a Member of Technical Staff in the
Robotics Systems Research Department, Holmdel,
NJ. He is concurrently working on his Ph.D. in
robotics at the University of Pennsylvania.

Mr. Andersson is a member of Eta Kappa Nu and

